

ArAlEval Shared Task: Propagandistic Techniques Detection in Unimodal and Multimodal Arabic Content

Maram Hasanain, Md. Arid Hasan, Fatema Ahmed, Reem Suwaileh,

Md. Rafiul Biswas, Wajdi Zaghouani, Firoj Alam

1 Unimodal (Text) Propagandistic Technique Detection

Propaganda is a communication tool that is **deliberately** used to **influence** audience towards a specific goal

https://araieval.gitlab.io

Task Definition: Given a multigenre text snippet, detect the propaganda techniques used in the text together with the exact span(s) in which each propaganda technique appears.

Example annotated paragraph

Data Collection:

- Tweets collected from different accounts of Arabic news sources (Hasanain et al., 2023) + tweets relevant to war on Gaza.
- News paragraphs selected from news articles (Hasanain et al. 2023) a. AraFacts (Ali et al., 2021) b. in-house news articles collection

Annotation:

- Phase 1: Individual annotators annotate the dataset
- Phase 2: Consolidation is done with expert annotators to resolve disagreement and ensure quality.

Dataset size

□ 1.5K tweets + 7.5K paragraphs

Multimodal Propagandistic Memes Classification

Task Definition

- Subtask 2A: Given a text extracted from a meme, categorize whether it is propagandistic or not.
- Subtask 2B: Given a meme (text overlayed image), detect whether the content is propagandistic.
- Subtask 2C: Given multimodal content (text extracted from meme and the meme itself), detect whether the content is propagandistic.

a) Propagandistic

Data Collection:

- Memes collected from public groups on social media platform (e.g., Facebook, Twitter (X), Instagram, etc)
- Texts from the memes were extracted using an off-the-shelf OCR.

Annotation:

- Three annotators per meme
- Majority voting for final labels

Dataset size

☐ 3K Memes

Results

T.		
Team	Rank	Micro F1
CUET_sstm	1	0.2995
Mela	2	0.2833
MemeMind	3	0.2774
Nullpointer	4	0.2541
SussexAI	5	0.1228
SemanticCuetSync	6	0.0783
Baseline		0.0151

Team	Rank	Macro F1		
AlexUNLP-MZ	1	0.787		
CLTL	2	0.779		
MemeMind	3	0.746		
DLRG	4	0.739		
One_by_zero	5	0.674		
Z-Index	6	0.633		
Baseline		0.453		
		- 77		

ΤΔ S Κ 2 Δ

IASK ZB				
Team	Rank Macro F1			
CLTL	1	0.711		
MemeMind	2	0.664		
AlexUNLP-MZ	3	0.659		
Baseline		0.475		

	ASK ZC	
Team	Rank	Macro F1
AlexUNLP-MZ	1	0.805
ASOS	2	0.798
CLTL	3	0.798
MemeMind	4	0.797
Team Engima	5	0.753
MODOS	6	0.729
Z-Index	7	0.712
Baseline		0.493

Evaluation Setup

- Development phase: released train and development subsets, and participants submitted runs on the development subsets.
- Test phase: participants submitted runs on the official test subsets.

Participation

Total (test phase): 14 teams Task 1: 6 teams Task 2: 9 teams

Approaches

- Task 1: fine-tuning Arabic transformer models like AraBERT is the most common system architecture. Majority of the teams modeled the task as a token classification problem.
- Task 2: fine-tuning transformer models such as MARBERT is the most popular architecture. As for the vision models ResNet was the most popular choice. For subtask C, multiple fusion techniques of text and image models were used.

Findings

- Task 1:
 - Results demonstrate the difficulty of the task with the best system achieving a Micro F1 of 0.3.
- Task 2:
 - As the subtasks were binary classification tasks, the participating systems generally had strong performance. The subtask 2B that is focused on the image modality proven to be the most challenging.

Summary and Future Work

Summary

- The shared task tackled both text and image modalities.
- Some systems reported challenges due to the skewed label distribution and attempted data augmentation approaches.
- Most systems fine-tuned transformer models.

Future work

- Extend the multimodal task to be at the span level
- Offer span level detection tasks

Acknowledgments

The work of M. Hasanain, F. Ahmed, R. Suwaileh, W. Zaghouani and F. Alam is partially supported by NPRP 14C-0916-210015 from the Qatar National Research Fund, which is a part of Qatar Research Development and Innovation Council (QRDI). The findings achieved herein are solely the responsibility of the authors.