



### 25 years of Cross Language / Conference and Labs Evaluation Forum























































# CheckThat! 2024

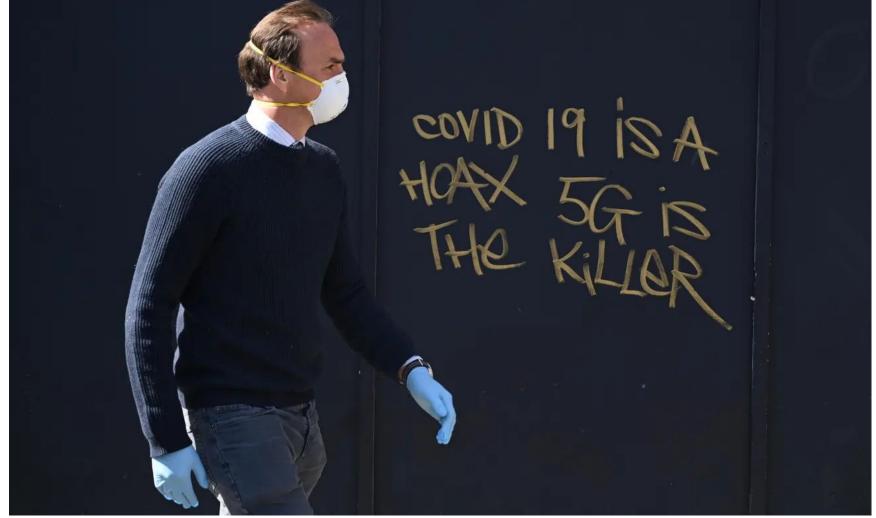
7<sup>th</sup> edition

Check-Worthiness, Subjectivity, Persuasion, Roles, Authorities, and Adversarial Robustness

http://checkthat.gitlab.io

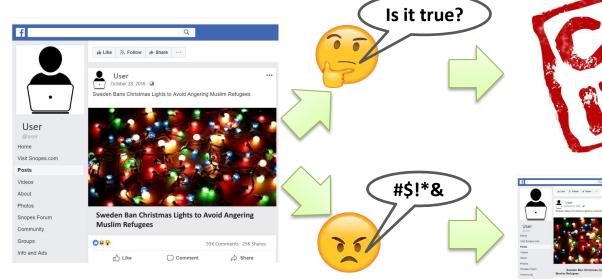
**CLEF 2024 Extended Lab Overview** 

10th September, 2024 Grenoble, France



https://www.theguardian.com/world/2020/apr/26/5g-coronavirus-and-contagious-superstition

# How?





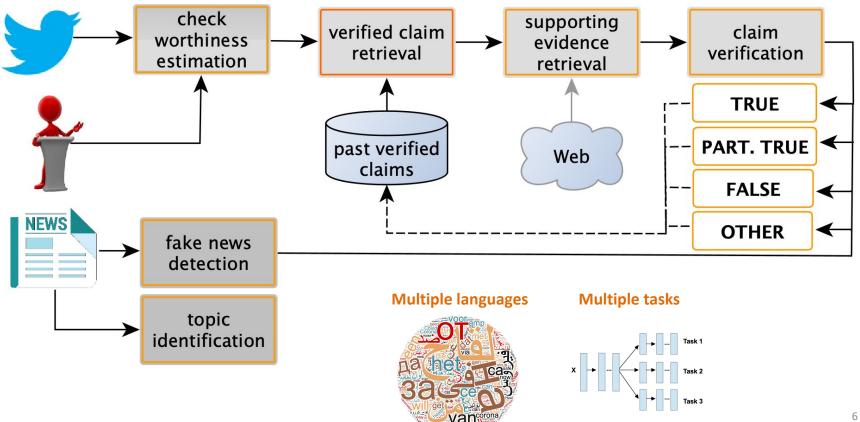






# The CheckThat! Lab @ CLEF

### The CheckThat! Lab (2018-2022) in a Nutshell



# **Participation**

| 201 | 18 Tasks         | Teams | Runs | <b>Papers</b> |
|-----|------------------|-------|------|---------------|
| 1.  | Check-worthiness | 7     | 21   | 5             |
| 2.  | Fact-checking    | 5     | 14   | 4             |
|     | Total            | 9     | 35   | 8             |

| 201 | 19 Tasks              | Teams | Runs | Papers |
|-----|-----------------------|-------|------|--------|
| 1.  | Check-worthiness      | 12    | 21   | 8      |
| 2.  | Evidence & Factuality | 4     | 36   | 4      |
|     | Total                 | 14    | 57   | 12     |

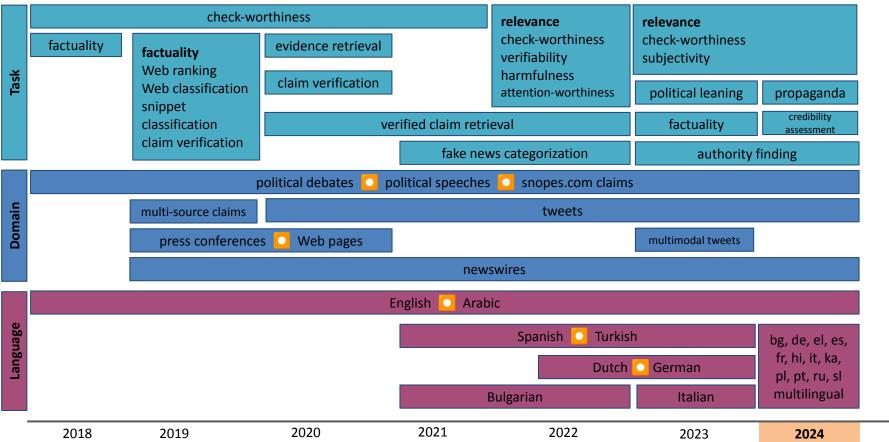
| 202 | Evidence retrieval       | Teams | Runs | Papers |
|-----|--------------------------|-------|------|--------|
| 1.  | Check-worthiness         | 15    | 54   |        |
| 2.  | Verified claim retrieval | 9     | 20   |        |
| 3.  | Evidence retrieval       | 1     | 2    |        |
| 4.  | Claim verification       | 1     | 2    |        |
|     | Total                    | 23    | 86   | 16     |

| 202 | 21 Tasks                 | Teams | Runs | Papers |
|-----|--------------------------|-------|------|--------|
| 1.  | Check-worthiness         | 15    | 74   | 10     |
| 2.  | Verified claim retrieval | 5     | 16   | 4      |
| 3.  | Fake news detection      | 27    | 139  | 13     |
|     | Total                    | 47    | 229  | 27     |

| 202 | 22 Tasks                  | Teams | Runs | Papers |
|-----|---------------------------|-------|------|--------|
| 1.  | Check-worthiness          | 18    | 210  | 13     |
| 2.  | Verified claim retrieval  | 7     | 37   | 3      |
| 3.  | Fake news detection       | 26    | 126  | 15     |
|     | Total                     | 51    | 373  | 31     |
| 202 | 23 Tasks                  | Teams | Runs | Papers |
| 1.  | Check-worthiness          | 19    | 155  | 12     |
| 2.  | Subjectivity              | 12    | 88   | 10     |
| 3.  | Bias                      | 6     | 41   | 4      |
| 4.  | Factuality                | 6     | 28   | 4      |
| 5.  | Authority                 | 2     | 4    | 1      |
|     | Total                     | 45    | 316  | 31     |
| 202 | 4 Tasks                   | Teams | Runs | Papers |
| 1.  | Check-worthiness          | 28    | 236  | 19     |
| 2.  | Subjectivity              | 15    | 113  | 11     |
| 3.  | Persuasion Techniques     | 2     | -    | 2      |
| 4.  | Hero, villain, and victim | _     | -    | -      |
| 5.  | Authority                 | 5     | 16   | 3      |
| 6.  | Adversarial Robustness    | 6     | 6    | 6      |
|     | Total                     | 46    | 294  | 36     |

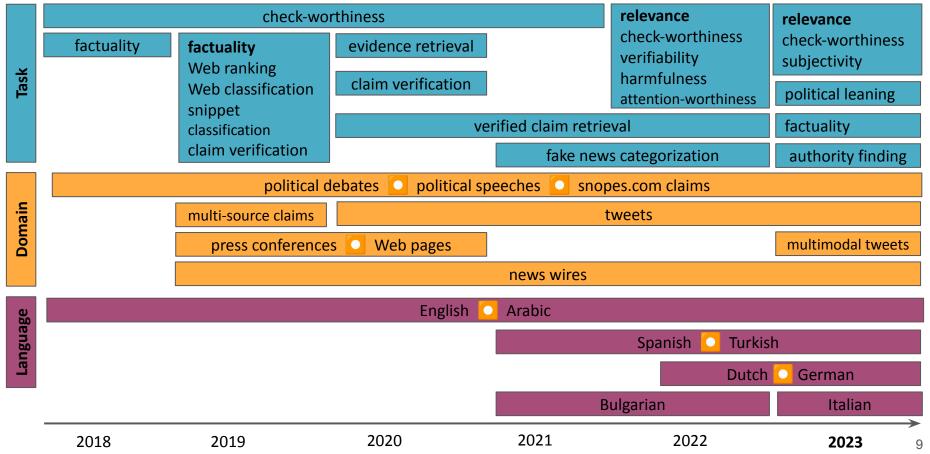
### The CLEF CheckThat! Lab:Tasks, Lang & Data





### Our Main Focus in 2018-2023





### The Verification Pipeline and 2024 Tasks



**T1** Check-worthiness estimation

**T2** Subjectivity in news

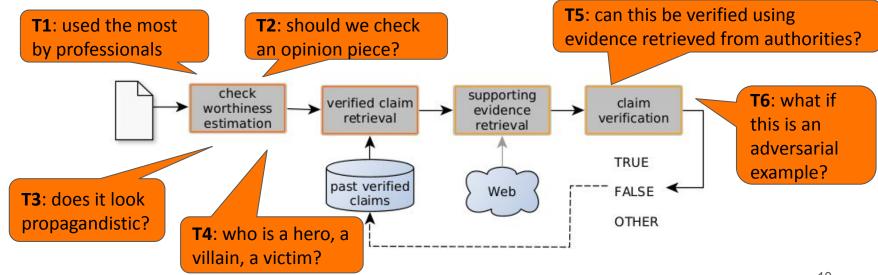
**T3** Persuasion in news

**T4** Hero, villain, and victim in memes

**T5** Rumor Verification using evidence from authorities

**T6** Robustness of Credibility Assessment with

Adversarial Examples



# Task 1: Check-Worthiness Estimation of Multigenre Content

### **Motivation**

By Robert Farley

Posted on August 17, 2023 | Corrected on December 13, 2023











In recent speeches touting so-called Bidenomics, President Joe Biden has repeatedly cited the statistic that "unemployment has been below 4% for the longest stretch in over 50 years."

### Olympic Boxer Imane Khelif Featured on Vogue Algeria Front Covers



بدأت مشاهد المذبحة الكبرى بالوصول ليلة البارحة قطع الاحتلال الإسر انيلي الإنترنت بالكامل وبدأ بقصف هستيرى حتى أن المتحدث باسم جيشه

> و سائل الإعلام التقليدية غير قادرة على نقل الصورة بالوضوح الذي تنقله هواتف الناشطين الآن بدأت مشاهد مذبحة البارحة تصل

الأرقام تتحدث عن حوالي 500 شهيد في ليلة واحدة وكما يظهر في الفيديو هات معظم المصابين من الأطفال GazaGenocide

#GazaBleedingWorldSleeping

صرح بأنه "يهاجم غزة بقوة عظيمة"

#### Translated from Arabic by Google

Scenes of great massacre began to arrive

Last night, the Israeli occupation cut off the entire Internet and began hysterical bombing. Its army spokesman even declared that it was "attacking Gaza with great force."

Traditional media are unable to transmit the image with the clarity that activists' phones transmit

Now the scenes of yesterday's massacre are starting to arrive The numbers speak of about 500 martyrs in one night, and as shown in the videos, most of the injured were children

#GazaGenocide

#GazaBleedingWorldSleeping



### **Task Description**

Which asks to detect whether a given text snippet from multigenre content, in a form of a tweet or a sentence from a political debate or speech, is worth fact-checking.



### **Data**

**Training, development and dev-test** subsets for the 2024 edition by re-using all the data released in 2023

#### **Test Sets:**

- **Arabic:** Tweets using keywords relevant to the war on Gaza, that started in October 2023.
- **Dutch:** 1k messages between January 2021 and December 2022 on climate change and its associated debate
- English: Transcribed sentences that did not appear in Arslan et al.
   (2020)
- **Spanish:** No test set

### **Data**

| Data Splits | Arabic                   |        | Du    | tch   | Eng   | glish  | Spanish       |        |  |
|-------------|--------------------------|--------|-------|-------|-------|--------|---------------|--------|--|
|             | Yes                      | Yes No |       | No    | Yes   | No     | Yes           | No     |  |
| Train       | 2,243                    | 5,090  | 405   | 590   | 5,413 | 17,087 | 3,128         | 16,862 |  |
| Dev         | 411                      | 682    | 102   | 150   | 238   | 794    | 704           | 4,296  |  |
| Dev-test    | 377                      | 123    | 316   | 350   | 108   | 210    | 509           | 4,491  |  |
| Test        | 218                      | 392    | 397   | 603   | 88    | 253    | 8 <del></del> | -      |  |
| Total       | <b>fotal</b> 3,249 6,287 |        | 1,220 | 1,693 | 5,847 | 18,344 | 4,341         | 25,649 |  |

### **Results**

|    | Arabic           |       |    | Dutch            |       |    | English          |       |
|----|------------------|-------|----|------------------|-------|----|------------------|-------|
|    | Team             | F1    |    | Team             | F1    |    | Team             | F1    |
| 1  | IAI Group        | 0.569 | 1  | TurQUaz          | 0.732 | 1  | FactFinders      | 0.802 |
| 2  | OpenFact         | 0.557 | 2  | DSHacker         | 0.730 | 2  | OpenFact         | 0.796 |
| 3  | DSHacker         | 0.538 | 3  | IAI Group        | 0.718 | 3  | Fraunhofer SIT   | 0.780 |
| 4  | TurQUaz          | 0.533 | 4  | Mirela           | 0.650 | 4  | mjmanas54        | 0.778 |
| 5  | SemanticCuetSync | 0.532 | 5  | Zamoranesis      | 0.601 | 5  | ZHAW_Students    | 0.771 |
| 6  | mjmanas54        | 0.531 | 6  | FC_RUG           | 0.594 | 6  | SemanticCuetSync | 0.763 |
| 7  | Fired_from_NLP   | 0.530 | 7  | OpenFact         | 0.590 | 7  | SINAI            | 0.761 |
| 8  | Madussree        | 0.530 | 8  | HYBRINFOX        | 0.589 | 8  | DSHacker         | 0.760 |
| 9  | pandas           | 0.520 | 9  | mjmanas54        | 0.577 | 9  | IAI Group        | 0.753 |
| 10 | HYBRINFOX        | 0.519 | 10 | DataBees         | 0.563 | 10 | Fired_from_NLP   | 0.745 |
| 11 | Mirela           | 0.478 | 11 | JUNLP            | 0.550 | 11 | TurQUaz          | 0.718 |
| 12 | DataBees         | 0.460 | 12 | Fired_from_NLP   | 0.543 | 12 | HYBRINFOX        | 0.711 |
| 13 | Baseline         | 0.418 | 13 | Madussree        | 0.482 | 13 | SSN-NLP          | 0.706 |
| 14 | JUNLP            | 0.212 | 14 | Baseline         | 0.438 | 14 | Checker Hacker   | 0.696 |
|    |                  |       | 15 | pandas           | 0.308 | 15 | NapierNLP        | 0.675 |
|    |                  |       | 16 | SemanticCuetSync | 0.218 | 16 | Mirela           | 0.658 |
|    |                  |       |    |                  |       | 18 | DataBees         | 0.619 |
|    |                  |       |    |                  |       | 19 | Trio_Titans      | 0.600 |
|    |                  |       |    |                  |       | 20 | Madussree        | 0.583 |
|    |                  |       |    |                  |       | 21 | pandas           | 0.579 |
|    |                  |       |    |                  |       | 22 | JUNLP            | 0.541 |
|    |                  |       |    |                  |       | 23 | Sinai and UG     | 0.517 |
|    |                  |       |    |                  |       | 24 | grig95           | 0.497 |
|    |                  |       |    |                  |       | 25 | CLaC             | 0.494 |
|    |                  |       |    |                  |       | 26 | Aqua_Wave        | 0.339 |
|    |                  |       |    |                  |       | 27 | Baseline         | 0.307 |

### **Approaches**

- Transformers were most popular.
- Monolingual and multilingual transformers
- Several teams used LLMs: LLaMA, Mistral, Mixtral, and GPT

| Team                  | La     | ngı   | age     |              |              |              |          |        |              |       |          | M        | od           | els      |              |        |              |         |          |          |        |              |              | Mi            | sc                              |                     |
|-----------------------|--------|-------|---------|--------------|--------------|--------------|----------|--------|--------------|-------|----------|----------|--------------|----------|--------------|--------|--------------|---------|----------|----------|--------|--------------|--------------|---------------|---------------------------------|---------------------|
|                       | Arabic | Dutch | English | LLama2       | LLama 3      | Mixtral      | Mistral  | GEITje | GPT-3.5      | GPT-4 | Gemini   | BERT     | RoBERTa      | BERTweet | XLM-r        | ALBERT | DistilBERT   | DeBERTa | Electra  | AraBERT  | BERTje | GPT-3        | Data aug     | Preprocessing | Data Pruning<br>Info Extraction | דוווסי העהומבהייםיו |
| Aqua_Wave [10]        |        |       | 26      |              |              |              |          |        |              |       |          | ~        | ~            |          |              |        |              |         |          |          |        |              | ~            |               |                                 |                     |
| Checker Hacker [14]   |        |       | 14      |              |              |              |          |        |              |       |          |          |              |          |              |        |              |         |          |          |        |              | $\checkmark$ |               |                                 |                     |
| CLaC [29]             |        |       | 25      |              |              |              |          |        |              |       | <b>~</b> |          |              |          |              |        |              |         |          |          |        |              | ~            |               |                                 |                     |
| DataBees [81]         | 12     | 10    | 18      |              |              |              |          |        |              |       |          | ~        | ~            |          | ~            | ~      | $\checkmark$ |         |          | <b>~</b> | ~      |              |              | ~             |                                 |                     |
| DSHacker [28]         | 3      | 2     | 8       |              |              |              |          |        | $\checkmark$ | ~     |          |          | ~            |          | ~            |        |              |         |          |          |        |              |              |               |                                 |                     |
| FactFinders [49]      |        |       | 1       | $\checkmark$ | $\checkmark$ | $\checkmark$ |          |        |              |       |          |          |              |          |              |        |              |         |          |          |        |              |              |               | ~                               |                     |
| FC_RUG [92]           |        | 6     |         |              |              |              |          | ~      |              |       |          |          |              |          |              |        |              |         |          |          |        |              |              |               |                                 |                     |
| Fired_from_NLP [15]   | 7      | 12    | 10      |              |              |              |          |        |              |       |          | ~        | ~            |          |              |        |              |         |          | <b>~</b> |        |              |              |               |                                 |                     |
| Fraunhofer SIT [91]   |        |       | 3       |              |              |              |          |        |              |       |          |          |              |          |              |        |              |         |          |          |        |              |              |               | ~                               | 2                   |
| HYBRINFOX [23]        | 10     | 8     | 12      |              |              |              |          |        |              |       |          | ~        | ~            |          |              |        |              |         |          |          |        |              |              |               |                                 | 2                   |
| IAI Group [1]         | 1      | 3     | 9       |              |              |              |          |        | ~            | ~     |          |          | $\checkmark$ |          | $\checkmark$ |        |              |         |          |          |        |              |              |               |                                 |                     |
| JUNLP [76]            | 14     | 11    | 22      |              |              |              |          |        |              |       |          | ~        |              |          |              |        |              |         |          |          |        |              |              |               | ~                               | 2                   |
| Mirela [20]           | 11     | 4     | 16      |              |              |              |          |        |              |       |          |          |              |          | ~            |        | $\checkmark$ |         |          |          |        |              |              |               |                                 |                     |
| OpenFact [77]         | 2      | 7     | 2       |              |              |              |          |        |              |       |          |          |              |          |              |        |              | ~       |          |          |        |              |              |               |                                 |                     |
| pandas [85]           | 9      | 15    | 21      |              |              |              |          |        |              |       |          | ~        |              |          |              |        |              |         |          |          |        |              |              | ~             |                                 |                     |
| SemanticCUETSync [60] | 5      | 16    | 6       |              |              |              |          |        |              |       |          | ~        | ~            |          |              |        | ~            |         |          |          |        |              |              |               |                                 |                     |
| SINAI [89]            |        |       | 7       |              |              |              |          |        | ~            |       |          |          | ~            |          |              |        |              |         |          |          |        | $\checkmark$ | ~            |               |                                 |                     |
| SSN-NLP [27]          |        |       | 13      |              |              |              |          |        |              |       |          | ~        | ~            |          | $\checkmark$ |        |              | ~       |          |          |        |              |              | ~             | ~                               | 2                   |
| Team_Artists [53]     | 6      | 9     | 4       |              |              |              |          |        |              |       |          | <b>~</b> | <b>~</b>     | ~        |              |        |              |         | <b>~</b> | ~        |        |              |              |               |                                 |                     |
| Trio_Titans [67]      |        |       | 19      |              |              |              |          |        |              |       |          |          | <b>~</b>     |          |              | ~      | ~            |         |          |          |        |              |              | ~             |                                 |                     |
| TurQUaz [12]          | 4      | 1     | 11      |              | ~            |              | <b>~</b> |        | <b>~</b>     | ~     | <b>~</b> |          |              |          | ~            |        |              |         |          |          |        |              |              |               |                                 |                     |

## Summary/Main takeaways/Highlights

The task attracted significant participation, with **75 registered teams** 

- 13, 15 and 26 teams participated for Arabic, Dutch and English, respectively

#### **Performances:**

- Performances of the systems are relatively higher for English, followed by Dutch and Arabic
- Performances suggest that there is a room for improvement for English and low resource languages.
- Interests have been increasing over the years...

| CT! Lab          | Content Type      | Modality    | Language               | Papers |
|------------------|-------------------|-------------|------------------------|--------|
| CT-2018 [40]     | Debate            | Text        | Ar, En                 | 5      |
| CT-2019 [41]     | Debate, Web pages | Text        | Ar, En                 | 8      |
| CT-2020 [42]     | Tweet             | Text        | Ar, En                 | 10     |
| CT-2021 [43, 44] | Tweet, debate     | Text        | Ar, Bg, En, Es, Tr     | 10     |
| CT-2022 [35, 45] | Tweet             | Text        | Ar, Bg, En, NI, Es, Tr | 13     |
| CT-2023 [46, 47] | Tweet             | Text, Image | Ar, En                 | 12     |
| CT-2024          | Tweet, debate     | Text        | Ar, En, NI             | 19     |

# Task 2: Subjectivity in News Articles

### **Motivation**

Subjective sentences often include elements that make them more difficult to analyze by machine learning models.

Objective sentences => Fact-checking pipeline

Subjective sentences => Additional processing

- Opinion piece: discard information
- Contains fact:
  - extract the objective version
  - o flag it as a feature?

The event, which organisers had envisaged as a celebration of a new, progressive era, turned into a chaotic nightmare.

There is yet everywhere a deficit in the public revenue because the shrinkage in everything taxable was so sudden and violent.

### **Task Description**

Given a sentence, extracted either from a news article, determine whether it is influenced by the subjective view of its author (class SUBJ) or presents an objective view of the covered topic (class OBJ).

Offered in five languages:

Arabic, Bulgarian, English, German, and Italian

Also offered in a multilingual setting.

# **Examples**

| English | While it's misguided to put all focus or hope onto one section of the working class, we can't ignore this immense latent power that logistics workers possess. | SUB |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|         | Workers would have a 24 percent wage increase by 2024, including an immediate 14 percent raise.                                                                | OBJ |
| Arabic  | الدكتور سامي الخيمي واللواء بهجت سليمان سفيران للأسد في حرب للعامن الخيمي واللواء بهجت سليمان سفيران للأسد في حرب                                              | SUB |
|         | وكما هو معلوم فوجود الأوزون يحمي الحياة على الأرض من الأشعة . فوق البنفسجية المنبعثة من الشمس                                                                  | OBJ |

### **Data**

|           | 7     | Training | g    | Dev   | velopm | ent  | Devel | opmen | t-Test |       | Test |      |
|-----------|-------|----------|------|-------|--------|------|-------|-------|--------|-------|------|------|
| Language  | Total | OBJ      | SUBJ | Total | OBJ    | SUBJ | Total | OBJ   | SUBJ   | Total | OBJ  | SUBJ |
| Arabic    | 1,185 | 905      | 280  | 297   | 227    | 70   | 445   | 363   | 82     | 748   | 425  | 323  |
| Bulgarian | 729   | 406      | 323  | 106   | 59     | 47   | 208   | 116   | 92     | 250   | 143  | 107  |
| English   | 830   | 532      | 298  | 219   | 106    | 113  | 243   | 116   | 127    | 484   | 362  | 122  |
| German    | 800   | 492      | 308  | 200   | 123    | 77   | 291   | 194   | 97     | 337   | 226  | 111  |
| Italian   | 1,613 | 1,231    | 382  | 227   | 167    | 60   | 440   | 323   | 117    | 513   | 377  | 136  |

### **Results**

| Rank | Team             | F1    | Rank | Team         | F1    | Rank | Team                   | F1    |
|------|------------------|-------|------|--------------|-------|------|------------------------|-------|
|      | Arabic           |       |      | Bulgarian    |       |      | English                |       |
| 1    | IAI Group        | 0.495 | 1    | (baseline)   | 0.753 | 1    | HYBRINFOX              | 0.744 |
| 2    | Nullpointer †    | 0.491 | 2    | Nullpointer  | 0.717 | 2    | Tonirodriguez          | 0.737 |
| 3    | (baseline)       | 0.485 | 3    | HYBRINFOX    | 0.715 | 3    | SSN-NLP                | 0.712 |
| 4    | SemanticCuetSync | 0.480 | 4    | IAI Group    | 0.582 | 4    | Checker Hacker         | 0.708 |
| 5    | Tonirodriguez    | 0.465 | 5    | JUNLP        | 0.364 | 5    | JK_PCIC_UNAM           | 0.708 |
| 6    | HYBRINFOX        | 0.455 |      | Italian      |       | 6    | SINAI                  | 0.703 |
| 7    | JUNLP            | 0.362 | 1    | JK_PCIC_UNAM | 0.792 | 7    | FactFinders            | 0.695 |
|      | German           | 8     | 2    | HYBRINFOX    | 0.784 | 8    | Vigilantes             | 0.695 |
| 1    | Nullpointer      | 0.791 | 3    | Nullpointer  | 0.743 | 8    | Eevvgg                 | 0.695 |
| 2    | IAI Group        | 0.730 | 4    | (baseline)   | 0.650 | 9    | Nullpointer            | 0.689 |
| 3    | (baseline)       | 0.699 | 5    | IAI Group    | 0.586 | 10   | Indigo                 | 0.639 |
| 4    | HYBRINFOX        | 0.697 |      | 653          |       | 11   | (baseline)             | 0.635 |
|      | Multilingual     |       |      |              |       | 12   | SemanticCuetSync       | 0.627 |
|      | Nullpointer *    | 0.712 | ĺ    |              | Ī     | 13   | JUNLP                  | 0.560 |
| 1    | HYBRINFOX        | 0.685 |      |              |       | 14   | CLaC                   | 0.450 |
| 2    | (baseline)       | 0.670 |      |              |       | 15   | IAI Group              | 0.449 |
| 3    | IAI Group        | 0.629 | -    |              |       |      | engine and observation |       |

<sup>†</sup> Team involved in the preparation of the data. \* Submitted after the official deadline.

# **Approaches**

| Team                               | Team Language |        |           |         |        |         |          |                         | Model      |        |          |          |               |        |                     |             |         | Misc |          |                         |                   |                  |                               |                   |
|------------------------------------|---------------|--------|-----------|---------|--------|---------|----------|-------------------------|------------|--------|----------|----------|---------------|--------|---------------------|-------------|---------|------|----------|-------------------------|-------------------|------------------|-------------------------------|-------------------|
|                                    | Multilingual  | Arabic | Bulgarian | English | German | Italian | BERT     | RoBERTa                 | DistilBERT | Gemini | mBERT    | mDeBERTa | Sentence-BERT | SetFit | Mistral-7B-Instruct | XLM RoBERTa | DeBERTa | BART | Llama    | Sentiment-Analysis-BERT | Data Augmentation | Translating data | <b>Multi-lingual Training</b> | Feature Selection |
| Checker Hacker [36]                |               |        |           | 4       |        |         |          | ~                       |            |        |          |          |               |        |                     |             |         |      |          |                         | ~                 |                  |                               |                   |
| CLaC [37]                          |               |        |           | 14<br>8 |        |         | <b>✓</b> |                         |            | ~      |          |          |               |        |                     |             |         |      |          |                         | ~                 |                  |                               | <b>2</b>          |
| Eevvgg [38]<br>FactFinders         |               |        |           | 8<br>7  |        |         | ~        |                         |            |        |          |          |               |        | ~                   |             |         |      |          |                         |                   |                  |                               | V                 |
| HYBRINFOX [39]                     | 1             | 6      | 3         | 1       | 4      | 2       |          | ~                       | V          |        | <b>~</b> |          |               |        | _                   |             |         |      |          |                         |                   | ~                |                               | <b>~</b>          |
| IAI Group [40]                     | 3             | 1      | 4         | 15      | 2      | 5       |          | $\overline{\mathbf{Z}}$ |            |        |          |          |               |        |                     | <b>~</b>    |         |      |          |                         |                   |                  |                               | _                 |
| Indigo [41]                        |               |        |           | 10      |        |         |          |                         |            |        |          |          | <b>~</b>      | ~      |                     |             |         |      |          |                         |                   |                  |                               |                   |
| JK_PCIC_UNAM [42]                  |               |        |           | 5       |        | 1       | ✓        |                         |            |        |          |          |               |        |                     |             |         |      |          |                         |                   |                  |                               | ~                 |
| JUNLP                              |               | 7      | 5         | 13      |        |         | ~        |                         |            |        | ~        |          |               |        |                     |             |         |      |          |                         |                   |                  |                               |                   |
| Nullpointer [35]                   | -             | 2      | 2         | 9       | 1      | 3       |          |                         |            |        |          | _        |               |        |                     |             |         |      | _        | ~                       |                   | ~                |                               |                   |
| SemanticCuetSync [43]              |               | 4      |           | 12      |        |         |          | _                       |            |        |          | <b>~</b> |               |        |                     |             |         |      | <b>~</b> |                         |                   |                  |                               |                   |
| SINAI                              |               |        |           | 6       |        |         |          | <b>V</b>                |            |        |          |          |               |        |                     |             |         |      |          |                         |                   |                  |                               |                   |
| SSN-NLP [44]<br>Tonirodriguez [45] |               | 5      |           | 3<br>2  |        |         |          | ~                       |            |        |          | ~        |               |        |                     | V           | ~       | V    |          |                         |                   |                  | ~                             | V                 |
| Vigilantes                         |               | J      |           | 8       |        |         | <b>~</b> |                         |            |        |          |          |               |        |                     | _           |         | _    |          |                         |                   |                  | _                             |                   |

<sup>-</sup> The run was submitted after the official deadline, therefore not part of the official ranking.

### **Summary**

- Transformers were most popular, both monolingual and multilingual.
- Strategies for data augmentation relied on LLMs.
- Strategies for addressing multilinguality include translation of data, multilingual training

# Task 3: Persuasion Techniques

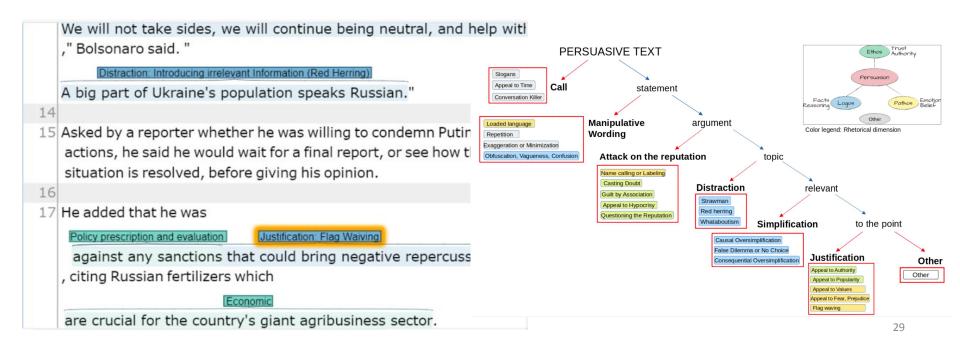
### **Motivation**

Recognizing the various techniques used in news articles to influence readers' opinions on important topics.



### **Task Description**

Given a news article and a list of 23 persuasion techniques, identify the spans where each technique occurs



### **Data**

|            | Training set | Development set | Test set |
|------------|--------------|-----------------|----------|
| English    | X            | Х               | X        |
| French     | X            | Χ               |          |
| Italian    | X            | X               |          |
| German     | X            | X               |          |
| Russian    | X            | X               |          |
| Polish     | X            | X               |          |
| Spanish    |              | X               |          |
| Greek      |              | X               |          |
| Georgian   |              | X               |          |
| Arabic     |              |                 | X        |
| Portuguese |              |                 | X        |
| Slovenian  |              |                 | X        |
| Bulgarian  |              |                 | X        |

|          | Trainii    | ng     | Development |        |  |  |
|----------|------------|--------|-------------|--------|--|--|
| language | #documents | #spans | #documents  | #spans |  |  |
| English  | 536        | 9,002  | 54          | 1,775  |  |  |
| French   | 211        | 6,831  | 50          | 1,681  |  |  |
| German   | 177        | 5,737  | 50          | 1,904  |  |  |
| Italian  | 303        | 7,961  | 61          | 2,351  |  |  |
| Polish   | 194        | 3,824  | 47          | 1,491  |  |  |
| Russian  | 191        | 4,138  | 72          | 944    |  |  |
| Georgian |            | -      | 29          | 218    |  |  |
| Greek    | -          | -      | 64          | 691    |  |  |
| Spanish  | -          | -      | 30          | 546    |  |  |

|            |            | Test        |        |          |
|------------|------------|-------------|--------|----------|
| language   | #documents | #paragraphs | #spans | $\alpha$ |
| Arabic     | 1,527      | 1,642       | 2,197  | -        |
| Bulgarian  | 100        | 916         | 1,732  | 0.197    |
| English    | 98         | 2,174       | 2,599  | 0.168    |
| Slovenian  | 100        | 1,478       | 4,591  | 0.470    |
| Portuguese | 104        | 1,501       | 1,727  | 0.587    |

### **Evaluation: Partial Matching**

Fact: humanity will be extinct by 2025

Fact: humanity will be extinct by 2025

By traditional measures this is not a match

We propose a evaluation measure based on partial matching

$$I(p,g) = \begin{cases} 1, & \text{if } \frac{|p \cap g|}{|g|} \geqslant 0.5 \text{ and } |p| \leqslant 2 \cdot |g| \\ \frac{|p \cap g|}{|g|} \in (0,1), & \text{if } \frac{|p \cap g|}{|g|} \in (0,0.5) \text{ and } |p| \leqslant 2 \cdot |g| \\ \frac{|p \cap g|}{|p|} \in (0,1), & \text{if } \frac{|p \cap g|}{|g|} \in (0,1] \text{ and } |p| > 2 \cdot |g| \text{ and } |p| \leqslant 4 \cdot |g| \\ 0, & \text{otherwise} \end{cases}$$

### **Results**

| Rank | Team                 | F1 micro | F1 macro | Rank       | Team                 | F1 micro | F1 macro |  |  |
|------|----------------------|----------|----------|------------|----------------------|----------|----------|--|--|
|      | English              | į.       | 9        | Portuguese |                      |          |          |  |  |
| 1    | UniBO                | 0.092    | 0.061    |            | PersuasionMultiSpan* | 0.132    | 0.120    |  |  |
|      | PersuasionMultiSpan* | 0.078    | 0.086    | 1          | UniBO                | 0.107    | 0.073    |  |  |
| 2    | Baseline             | 0.009    | 0.001    | 2          | Baseline             | 0.002    |          |  |  |
|      | Bulgaria             | n        | 3        | Slovenian  |                      |          |          |  |  |
|      | PersuasionMultiSpan* | 0.132    | 0.128    |            | PersuasionMultiSpan* | 0.153    | 0.127    |  |  |
| 1    | UniBO                | 0.114    | 0.081    | 1          | UniBO                | 0.123    | 0.075    |  |  |
| 2    | Baseline             | 0.009    | 0.002    | 2          | Baseline             | 0.003    | 0.002    |  |  |
|      | Arabic               |          |          |            |                      |          |          |  |  |
| 1    | Mela                 | 0.301    | 0.080    |            |                      |          |          |  |  |
| 2    | UniBO                | 0.108    | 0.068    |            |                      |          |          |  |  |
|      | PersuasionMultiSpan* | 0.028    | 0.059    |            |                      |          |          |  |  |
| 3    | Baseline             | 0.021    | 0.006    |            |                      |          |          |  |  |

<sup>\*</sup> Post competition experiment from the organizers

# **Approaches**

| Team  | n Language |    |    |    |          | Mo       | Misc    |          |
|-------|------------|----|----|----|----------|----------|---------|----------|
|       | Aı         | Bg | En | Pt | SI       | mBERT    | DeBERTa | Data aug |
| Mela  | ~          |    |    |    |          | <b>~</b> |         |          |
| UniBO | ~          | ~  | ~  | ~  | <b>~</b> |          | ~       |          |

## **Summary/Main Takeaways/Highlights**

- Mostly fine-tuned transformer-based model
- Multilingual transformers
- Strategies for data augmentation
- Strategies for two-stage classification process

Task 4: Detecting the hero, the villain, the victim in memes

### **Motivation**

- Social media
  - Online information exchange
  - Room for manifestation
- Memes express:
  - Fmotions<sup>1</sup>
  - Sarcasm<sup>2</sup>
  - Hate speech<sup>3</sup> and misinformation<sup>4</sup>
  - Offensiveness<sup>5</sup> and harmfulness<sup>6</sup>
- What about the semantic roles within the memes
- 1. Sharma et al., SemEval-2020 Task 8: Memotion Analysis- the Visuo-Lingual Metaphor!, SemEval '20
- 2. Kumar and Garg, Sarcasm detection in typographic memes, ICAESMT '19,
- 3. Zhou et al., Multimodal learning for hateful memes detection, ICMEW '21
- 4. Zidani and Moran, Memes and the spread of misinformation: Establishing the importance of media literacy in the era of information Disorder, Teaching Media Quarterly
- 5. Suryawanshi et al., Multimodal meme dataset (MultiOFF) for identifying offensive content in image and text, Workshop on Trolling, Aggression and Cyberbullying

7. Sharma et al., Findings of the CONSTRAINT 2022 Shared Task on Detecting the Hero, the Villain, and the Victim in Memes, CONSTRAINT 2022

- 6. Pramanick et al., Detecting harmful memes and their targets, ACL-IJCNLP '21,



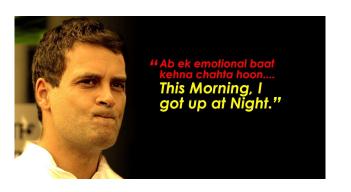


# **Task Description**

**Objective**: Predict roles ("hero", "villain", "victim", or "other") for each entity in a meme.

**Input:** Meme (image + extracted text) and list of entities.

## **Examples**







- (a) Rahul Gandhi (Villain) EnHi
- (b) Transgenders (Villain) En
- (c) ваксината (Villain) Bg

☐ Hero: Entity presented in a positive light. Glorified for their deeds conveyed via the meme

- *Villain*: Portrayed negatively, associated with adverse traits like wickedness, cruelty, hypocrisy, etc.
- ✓ Victim: Portrayed as suffering the negative impact of an unfair act/wrongdoing.
- Other: The entity is not a hero, a villain, or a victim.

# **Annotation Guidelines and Training Data**

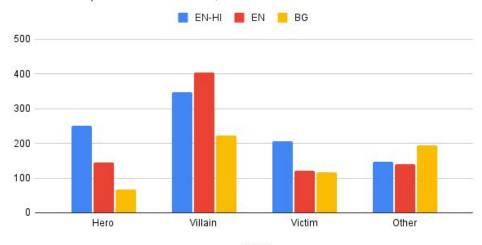
| S. No. | Annotation guidelines                                                                                                                                                             |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Meme author's perspective needs to be considered as the frame of reference, while assigning roles.                                                                                |
| 2      | Towards complete assimilation, both visual and textual cues should be factored-in.                                                                                                |
| 3      | Relevant background context should be acquired before assigning roles.                                                                                                            |
| 4      | Ambiguous memes can be categorised as <i>other</i> .                                                                                                                              |
| 5      | A 3-point Likert scale based mental frame of reference, implying <i>negative</i> , <i>neutral</i> and <i>positive</i> sentiments involved, should steer connotation adjudication. |
| 6      | All reasonably intelligible (without ambiguity) entities referred must be considered as valid.                                                                                    |
| 7      | Entities with multiple interpretations should be categorised as other.                                                                                                            |
| 8      | The role of the original speaker of a quote, expressed within a meme, must not be presumed.                                                                                       |

| Released for Training (En) |     |         | Offic | eial Test (h | idden)                 |
|----------------------------|-----|---------|-------|--------------|------------------------|
| Train                      | Dev | Devtest | En    | Hi+En        | $\mathbf{B}\mathbf{g}$ |
| 3,711                      | 468 | 501     | 500   | 500          | 227                    |

# **Data: Testing**

| Roles   | EN-HI | EN  | BG  |
|---------|-------|-----|-----|
| Hero    | 252   | 144 | 66  |
| Villain | 348   | 404 | 222 |
| Victim  | 207   | 122 | 116 |
| Other   | 148   | 141 | 195 |
| Total   | 955   | 811 | 599 |

### Count comparison for EN-HI, EN and BG



40

# **Task 5: Authority Evidence for Rumor Verification**

### **Motivation**

### A trusted source of evidence for fact checking



### **Motivation**

### **Rumor tweet**



### Translated from Arabic by Google

The Corona epidemic reached the Emirates, with 75 cases in Abu Dhabi and 63 cases in Dubai

A warning to refrain from traveling to the Emirates in order to maintain safety and not transmit the epidemic.

May God protect Muslims everywhere...

5:36 PM · Jan 29, 2020

### **Authorities Twitter accounts**





### Evidence tweets from authorities





the Emirates at the beginning of January 2020, and were admitted to the

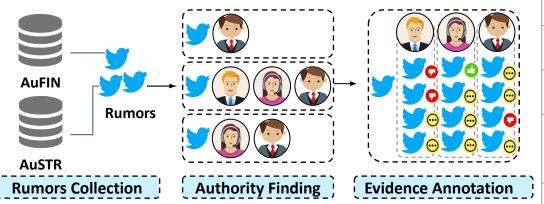
hospital after their infection with فيروس كورونا was confirmed.

4:08 PM · Jan 29, 2020

# **Task Description**



### **Data**



|          | Arabic rumors | English rumors |
|----------|---------------|----------------|
| Train 96 |               | 96             |
| Dev      | 32            | 32             |
| Test     | 32            | 32             |

| Rumors           |       |  |
|------------------|-------|--|
| SUPPORTS         | 30    |  |
| REFUTES          | 64    |  |
| NOT ENOUGH INFO  | 66    |  |
| Authority tweets |       |  |
| Authorities 692  |       |  |
| Authority tweets | 33705 |  |

The data is originally in Arabic but translated to English

### **Evidence Retrieval Results**

|         | ·    |                                                      |       |          |
|---------|------|------------------------------------------------------|-------|----------|
|         | Rank | Team (run ID)                                        | MAP   | Recall@5 |
|         | 1    | bigIR <sup>+</sup> (bigIR-MLA-En)                    | 0.604 | 0.677    |
| sh      | 2    | Axolotl (run_rr=llama_sp=llama_rewrite=3_boundary=0) | 0.566 | 0.617    |
| ilg     | 3    | DEFAULT (DEFAULT-Colbert1)                           | 0.559 | 0.634    |
| English | 4    | IAI Group (IAI-English-COLBERT)                      | 0.557 | 0.590    |
|         | 5    | AuthEv-LKolb (AuthEv-LKolb-oai)                      | 0.549 | 0.587    |
|         |      | Baseline                                             | 0.335 | 0.445    |

5 teams for English

Arabic

| Rank | Team (run ID)                                                  | MAP   | Recall@5 |
|------|----------------------------------------------------------------|-------|----------|
| 1    | $\mathrm{bigIR^{+}}$ ( $\mathrm{bigIR\text{-}MLA\text{-}Ar}$ ) | 0.618 | 0.673    |
| 2    | IAI Group (IAI-Arabic-COLBERT)                                 | 0.564 | 0.581    |
|      | Baseline                                                       | 0.345 | 0.423    |
| 3    | SCUoL (SCUoL)                                                  | _     | -        |

3 teams for Arabic

### **Evaluation:**

Mean Average Precision (MAP) for evidence retrieval

### **Rumor Verification Results**

English

| Rank        | Team (run ID)                                                                        | m-F1                  | Strict m-F1             |
|-------------|--------------------------------------------------------------------------------------|-----------------------|-------------------------|
| 1<br>2      | AuthEv-LKolb (AuthEv-LKolb-oai) Axolotl (run_rr=llama_sp=llama_rewrite=3_boundary=0) | $0.879 \\ 0.687$      | $0.861 \\ 0.687$        |
|             | Baseline                                                                             | 0.495                 | 0.495                   |
| 3<br>4<br>5 | DEFAULT (DEFAULT-Colbert1) bigIR+ (bigIR-MLA-En) IAI Group (IAI-English-COLBERT)     | 0.482 $0.458$ $0.373$ | 0.454<br>0.428<br>0.373 |

5 teams for English

Arabic

| Rank | Rank Team (run ID)                |       | Strict m-F1 |
|------|-----------------------------------|-------|-------------|
| 1    | IAI Group (IAI-Arabic-COLBERT)    | 0.600 | 0.581       |
| 2    | bigIR <sup>+</sup> (bigIR-MLA-Ar) | 0.368 | 0.300       |
| 3    | SCUoL (SCUoL)                     | 0.355 | -           |
|      | Baseline                          | 0.347 | 0.347       |

3 teams for Arabic

### **Evaluation:**

• Macro-F1 and strict Macro-F1 for rumor verification

## **Approaches**

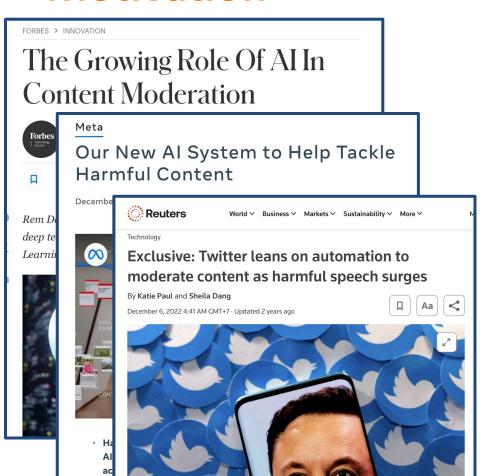
- 5 teams for English: bigIR, IAI group, DEFAULT, Axolotl, AuthEv-LKolb
- 3 teams for Arabic: bigIR, IAI group, SCUoL
- 2 teams participated in both languages.
- Multiple approaches for evidence retrieval:
  - Fine-tuned existing fact-checking models.
  - Adopted a zero-shot setup by leveraging existing pre-trained language models, LLMs, lexical retrieval such BM25, or combination of these models.
- Different approaches for rumor verification:
  - Fine-tuned existing fact-checking models.
  - Adopted a zero-shot setup using Large language models such as GPT-4 and Llama.

# **Summary/Main takeaways/Highlights**

- For evidence retrieval, a fine tuned fact-checking model outperformed all models.
- For **rumor verification**, only the models adopting LLMs managed to outperform the baseline.
- The data is relatively small to train effective rumor verification models.

# Task 6: Robustness of Credibility Assessment with Adversarial Examples (InCrediblAE)

### **Motivation**



- ML is increasingly common in moderation of platforms with user-generated content
- Automatic credibility analysis can perform well, but is it vulnerable to motivated attackers?
- Let's check how easy it is to fool a text classifier by making small changes to text input!

# **Task Description**

- for each credibility assessment task t (e.g. propaganda detection)
  - o for each victim classifier  $f_{t,v}$  (e.g. fine-tuned BERT)
    - for each attack example  $x_i$ , e.g.

      Puerto Rico's housing secretary, Fernando Gil, says the number of homes destroyed by the hurricane totals about 70,000 so far, (...)
    - find an adversarial modification x<sub>i</sub>\*, e.g.
      Puerto Rico's housing secretary, Fernando Gil, says the number of houses destroyed by the hurricane totals about 70,000 so far, (...)
    - such that  $f_{t,v}(x_i) \neq f_{t,v}(x_i^*)$

=> Compute the victim confusion, example similarity and number of queries.

### **Data**

- Five domains/tasks of credibility assessment:
  - News bias assessment (HN)
  - Propaganda detection (PR)
  - Fact checking (FC)
  - Rumour detection (RD)
  - COVID-19 misinformation detection (C19)
- -> All based on previously published datasets.

- Three victim classifiers:
  - simple BiLSTM network,
  - fine-tuned BERT
  - surprise classifier (revealed in test phase): RoBERTa, adversarially fine-tuned.

| Task | Training | Attack | Development | Positive |
|------|----------|--------|-------------|----------|
| HN   | 60,235   | 400    | 3,600       | 50.00%   |
| PR   | 12,675   | 416    | 3,320       | 29.42%   |
| FC   | 172,763  | 405    | 19,010      | 51.27%   |
| RD   | 8,694    | 415    | 2,070       | 32.68%   |
| C19  | 1,130    | 595    | 0           | 42.55%   |

## **Approaches**

- Six teams have submitted solutions:
  - MMU\_NLP (Manchester Metropolitan University)
  - TurQuaz (TOBB University of Economics and Technology)
  - TextTrojaners (University of Zurich)
  - Palöri (University of Zurich)
  - OpenFact (Poznań University of Economics and Business)
  - SINAI (University of Jaén)
- -> All have submitted papers
- -> Go to the presentations to see their approaches sessions on Wednesday: oral (OpenFact, TextTrojaner and MMU\_NLP) and poster (SINAI and TurQuaz)

### Results

### Automatic evaluation:

- o confusion score  $[f_{t,v}(x_i) \neq f_{t,v}(x_i)]$
- semantic similarity score [BLEURT]
- character similarity score [Levenshtein]
- BODEGA score
- Manual evaluation:
  - meaning preserved / changed / nonsensical
  - confidence [1-5]

| #  | Method        | BODEGA avg. |
|----|---------------|-------------|
| 1. | OpenFact      | 0.7458      |
| 2. | TextTrojaners | 0.7074      |
| 3. | TurQUaz       | 0.4859      |
| 4. | Palöri        | 0.4776      |
| 5. | $MMU_NLP$     | 0.3848      |
| 6. | SINAI         | 0.3507      |
|    | BERT-ATTACK   | 0.4261      |
| _  | DeepWordBug   | 0.2682      |

| Team          | % of Preserve the meaning |
|---------------|---------------------------|
| SINAI         | 99%                       |
| $MMU_NLP$     | 96%                       |
| TurQUaz       | 62%                       |
| Plagori       | 14%                       |
| OpenFact      | 11%                       |
| TextTrojaners | 7%                        |

# **Highlights**

- Two word-focused approaches dominated the automatic evaluation:
   OpenFact and Palöri,
- In manual evaluation, the two character-focused approaches were judged as best at preserving meaning: SINAI and MMU\_NLP
- **TextTrojaners** won some of the scenarios, but at the cost of very many queries (record: 15,458.12)
- OpenFact were overall winners, but did not submit the number of queries.
- Only the TurQUaz team attempted to prompt LLMs for adversarial examples, but the results were not encouraging.

All the data are available for more experiments in the BODEGA framework: <a href="https://github.com/piotrmp/BODEGA/">https://github.com/piotrmp/BODEGA/</a>

# **CheckThat! Program**

### **Programme (Grenoble time)**



### CT! oral session 1: Tuesday 10th September, 16:40 to 18:10

- 16:40 Introduction to the CheckThat! Lab
- 17:25 Task 1: Three talks on Check-Worthiness in Multigenre Content

### CT! oral session 2: Wednesday 11th September, 14:00 to 15:30

- 14:00 Task 2: Three talks on Subjectivity in News Articles
- 14:45 **Task 5**: Three talks on Rumor verification using evidence from authorities

### **CLEF poster session 3: Wednesday 11th September, 15:30-16:30**

### CT! oral session 3: Wednesday 11th September, 16:30 to 18:00

- 16:30 Task 3: One talk on Persuasion techniques
- 14:45 Task 6: Three talks on Robustness of Credibility Assessment with Adversarial Examples
- 17:30 Invited talk. Salim Hafid. Claims and Sources in Scientific Web Discourse (SciWeb)

### **Details on the CheckThat! website:**

http://checkthat.gitlab.io/clef2024/#lab-programme

### **Organisation**





Alberto Barrón-Cedeño



Firoj Alam



Julia Maria Struß



**Preslav Nako** 



Tanmoy Chakraborty



Tamer Elsayed



Piotr Przybyła



Tommaso Caselli



Giovanni da San Martino



Fatima Haouari



Maram Hasanain



Chengkai Li



Jakub Piskorski



Federico Ruggeri



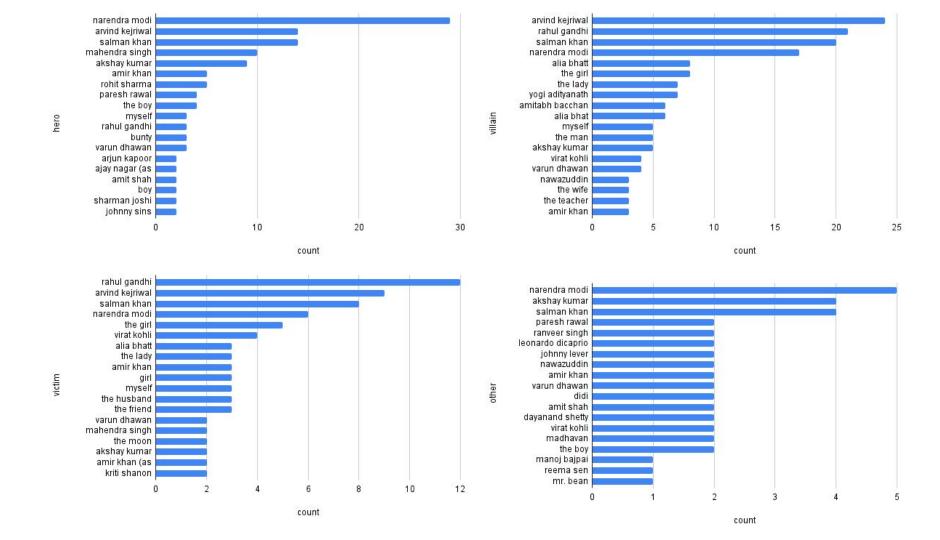
Xingyi Song



Reem Suwaileh

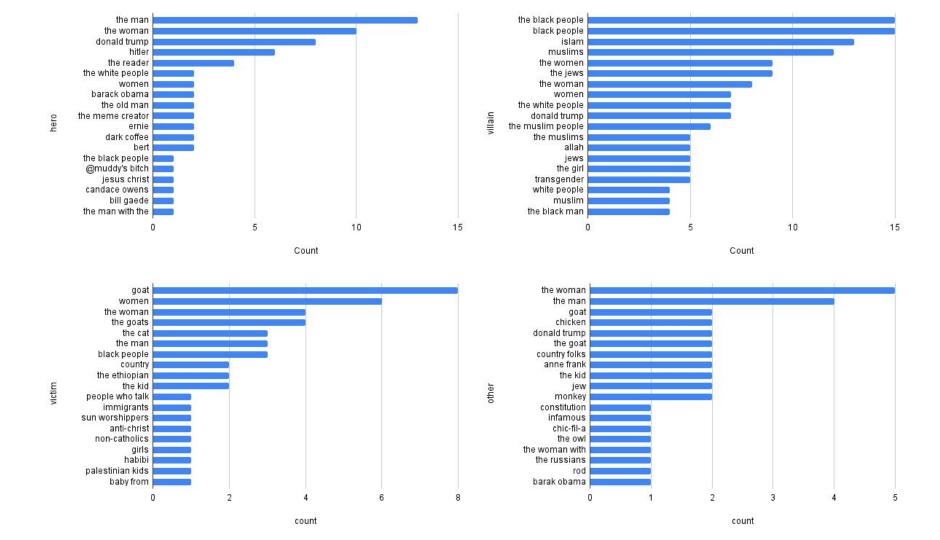
## **Testset (En-Hi)**

- Polarized Portrayals: Figures like Narendra Modi and Arvind Kejriwal appear as both heroes and villains, indicates polarizing public perception in memes.
- Flexible Narratives: Celebrities such as Salman Khan are depicted across hero, villain, and victim roles, expressing adaptability of public figures in meme storytelling.
- Satire in Politics & Entertainment: Memes heavily focus on political and entertainment figures; satire prominently used for public events and controversies.
- **Public Sentiment**: Victimization in memes also reflects public sentiment; figures like Rahul Gandhi often portrayed as victims in satire.
- **Code-Mixed Language**: Hindi-English code-mixing in memes makes them more relatable to bilingual audiences, expanding reach and engagement.



# Test-set (En)

- Cultural and Social Roles: Familiar figures like political leaders or archetypal characters are elevated as heroes, while portraying marginalized groups as villains, reflecting societal biases.
- Humor and Irony: Victim range from serious (e.g., women) to humorous (e.g., goats), using satire or trivialization.
- Gender Dynamics: Both men and women are featured prominently, roles switches equally between hero and victim, highlighting traditional gender representations.
- Political and Social Bias: Memes amplify political and social biases, often portraying real-world groups as villains, serving as a mirror of ideological viewpoints.
- **Simplification of Issues**: Memes condense complex issues into simple hero-villain-victim narratives, which can perpetuate stereotypes or biases.



# **Testset (Bg)**

- Humor and Irony: The Bulgarian nation is often portrayed through a fictional literature character (Bay Ganyo) considered an exemplary image of an anti-hero: an uneducated, ignorant, egoistic and poor.
- **Gender Dynamics**: Men are prominently featured in both hero and victim roles, primarily because most big political party leaders are men..
- Victimization: The Bulgarian people are predominantly portrayed as victims of a corrupt government or specific political parties.
- **Simplification:** Memes simplify the political landscape into a choice between *A very bad villain* and a much *better Hero* alternative.

