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Introduction

e Propaganda techniques can influence readers opinions
and actions U UUURRPPRRRRRY |
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Translation: He added: “In parallel with the optimistic atmosphere that their
- - - - - - - sources are spreading, they are spreading rumors that the formation process has
® FeW datasets eXISt 1 any Iang uagea usual Iy I Im Ited N Slze " - ended, and that it's only a matter of hours. They deceive others into believing that
. they want to form the government while others want to obstruct it, just as they did -
with previous governments, particularly in the Ministry of Energy, which they held
. for years and promised to provide electricity 24/7. So where is the electricity?”

O Tralnlng SpECIaIIZEd mOdEIS reqUIres Iarge-scale annOtatEd * Techniques: Obfuscation, Intentional Vagueness, Confusion Smears

d ata SEtS’ Can LLMS he,p deve/op SUCh da tase ts ? A news paragraph annotated by propaganda techniques at the text span level
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Contributions

1. First attempt to explore GPT-4 as an annotator for propagandistic text spans detection and

labelling.

2. Serving as a consolidator, GPT-4 provides labels that can be effectively used to train a

specialized model for the task.

3. All scripts and annotations from human annotators and GPT-4 are released to the

community.
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Approach

Annotate news paragraphs in two stages:
(i) 3 annotators and
(ii) 2 expert annotators consolidate annotations.

Acquire manually
annotated data

e Annotator: Instruct GPT-4 to annotate paragraphs.
. e Selector: Select from all techniques given by annotators and extract matchin
Annotate with GPT-4 ) S SEERSY :
ext spans.
e Consolidator: Consolidate all labels and spans from stage (i) annotators.

Train a span extraction and annotation SLM (AraBERT) using: )

g[ahl/lnsand annotate with manual annotations and each of the 3 sets of GPT-4 '-

annotations = 4 SLMs

QATAR COMPUTING RESEARCH INSTITUTE



0 OV aa jiliaa L AN A0 o) sa) aa (g 30 5L 5" silia)
TR - DIPTPRI1 SRR ISR o 10 SO SUCY PR I 11T
= Oslsh ad ylaa LAS Al A0l ) ga ) ae (g ) sl " alal

T O s PRI L5 ) A5 ) s e o) sl 5" 1cilia)
CrAY) eile b Al ol o gt Cadlall ddee o clelay)

a) Manual Annotation

Approach
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Propaganda Techniques:

1, MET X NENIETL, Obfuscation,

Vagueness Confusion
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b) GPT-4 as Annotator
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Input paragraph

Span labeled

c) GPT-4 as Consolldator
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Span labeled

Translation: He added: “In parallel with the optimistic atmosphere that their sources are spreading, they are spreading rumors that the formation
process has ended, and that it's only a matter of hours. They deceive others into believing that they want to form the government while others want
to obstruct it, just as they did with previous governments, particularly in the Ministry of Energy, which they held for years and promised to provide
electricity 24/7. So where is the electricity?”
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ArPro Dataset: Manual Annotation Stats

[ Dataset covers 23 propaganda techniques }

Content Stat
# news articles 2,810
# paragraphs 8,000
avg par. length 34.74

% Propagandistic paragraphs 63%

# Techniques 17,521

Distribution of manually

L annotated dataset (ArPro)

J
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Technique %
Loaded Language 99.3
Name Calling-Labeling 11.5
Exaggeration-Minimisation 7.4
Questioning the Reputation 4.4

Obfuscation-Vagueness-Confusion

4.3

L Distribution of top 5 techniques

in ArPro




Experiments

Aims
e Study GPT-4’s performance in its different roles.

e |Investigate quality of generated labels in training SLMs

Tasks

Propaganda text spans identification and labelling (Multilabel + Multiclass +
Sequence tagging)

Datasets

® ArPro: 75% train, 8.5% dev, and 16.5% test.
e ArAlEvalT1: SOTA test subset
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Experiments

Models

e [ransformer models (PLM): AraBERT
o GPT-4

Evaluation Measures
e Modified F1 (considers partial matches)

® Inter-rater agreement (y)
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Results
How does GPT-4 perform in annotation?

Role Micro-F1 Macro-F1 | Span (y)

Annotator 0050 0045 0247 [“‘abmﬁhmmuj‘a@\qgiﬂ\@.«cgh»ﬁ@@&d\@j\jﬂ\;\};‘\j\@gjbﬂgj" :s_'ehb\]
Wron indices redicted! gold {"start": 58, "end": 77, "technique": "Loaded_Language", "text": "<leliy) o) (sl s "}

SeleCtor O 1 37 O 1 44 0477 g p predicted {"start": 82, "end": 101, "technique": "Loaded_Language", "text": "<leliY) o) oslsi "}

Consolidator | 0.671 0.570 0.609

~ Apply a correction heuristic!

Role Micro-F1 (orig) Micro-F1 (correct)
Annotator 0.050 0.117
Selector 0.137 0.297
Consolidator 0.671 0.670

e In cases where GPT-4 has to predict the text spans (annotator and selector), it predicts wrong text indices
but correct text spans.

e A simple heuristic to find first appearance of text span in a paragraph significantly improves performance (.4

Xhd
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Results
How useful are GPT-4 annotations for SLM training?

e T[rain a SLM using the 3 sets of GPT-4 annotations
e Compare to SLM trained on gold labels

Model Train Set Micro-F1 Model Train Set Micro-F1
Random - 0.010 CUET sstm - 0.300
GPT-4 - 0.117 AraBERT GPT-4 Annotator 0.124
AraBERT GPT-4Annotator 0.127 AraBERT GPT-4selector 0.257
AraBERT GPT-4selector 0.236 AraBERT GPT-4consolidator M
AraBERT GPT-4consolidator m AraBERT ArProtrain 0.406
AraBERT  ArProtrain 0.387
-
L which is tr?:f;sotnsélrilif;e:f the same L : .TGSt on ArAIEvaIZA'T“eSt }
gold dataset ) which is the Arabic SOTA for the task

e SLM shows significantly better performance when using GPT-4 as consolidator labels

e SLM with GPT-4 annotations outperforms SOTA on ArAlEval24T 1test
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Results
Does GPT-4 annotate some techniques more effectively?

e Compute per-technique Technique Aot |
annotation agreement , Across different roles, GPT-4
_ Causal Oversimplification 0.889 . :
(v) with gold labels . TP shows High agreement with
Consequential Oversimplification 0.835
gold labels for some
Doubt 0.815 _
techniques.
Obfuscation/Vagueness/Confusion 0.791
Selector

Doubt 0.802

Flag Waving 0.705

Appeal to Hypocrisy 0.66

Loaded Language 0.654

Consolidator

False Dilemma /No Choice 0.872

Loaded Language 0.774

Straw Man 0.697

Doubt 0.695 hh

Xb4
A *
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Conclusions

e This is the first attempt at investigating GPT-4’s performance as an annotator for propaganda span

identification and labelling.

e \We the model’s performance when provided with sets of information of varied richness, which

represents an increased cost and effort in hiring human annotators.

e \We study the effectiveness of GPT-4's labels when used to train specialized models for the task.

e Results:

o Providing more information significantly improves the model’'s annotation performance and

agreement with human expert consolidators.

o We can train effective models using labels provided by GPT-4 when acting as a consolidator.

e Future research will explore additional LLMs and learning setups (e.g., few shot learning). MK
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Thank You

https://github.com/MaramHasanain/llm_prop annot
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