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Introduction

● Propaganda techniques can influence readers opinions 
and actions 
⇒ Need to design systems to detect them and   

        associated text spans.

● Few datasets exist in any language, usually limited in size.

● Training specialized models requires large-scale annotated 
datasets, can LLMs help develop such datasets? A news paragraph annotated by propaganda techniques at the text span level
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Contributions

3. All scripts and annotations from human annotators and GPT-4 are released to the 

community. 

1. First attempt to explore GPT-4 as an annotator for propagandistic text spans detection and 

labelling.

2. Serving as a consolidator, GPT-4 provides labels that can be effectively used to train a 

specialized model for the task.
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Approach

Acquire manually 
annotated data

Annotate news paragraphs in two stages: 
(i) 3 annotators and 
(ii) 2 expert annotators consolidate annotations.

Annotate with GPT-4
● Annotator: Instruct GPT-4 to annotate paragraphs.
● Selector: Select from all techniques given by annotators and extract matching 

text spans.
● Consolidator: Consolidate all labels and spans from stage (i) annotators.

Train and annotate with 
SLMs

Train a span extraction and annotation SLM (AraBERT) using: 
manual annotations and each of the 3 sets of GPT-4 
annotations ⇒ 4 SLMs
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Approach
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ArPro Dataset: Manual Annotation Stats

Content Stat

# news articles 2,810

# paragraphs 8,000

avg par. length 34.74

% Propagandistic paragraphs 63%

# Techniques 17,521

Technique %

Loaded Language 59.3

Name Calling-Labeling 11.5

Exaggeration-Minimisation 7.4

Questioning the Reputation 4.4

Obfuscation-Vagueness-Confusion 4.3

Distribution of manually 
annotated dataset (ArPro)

Distribution of top 5 techniques 
in ArPro

Dataset covers 23 propaganda techniques
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Experiments

● Study GPT-4’s performance in its different roles.

Aims

Tasks
Propaganda text spans identification and labelling (Multilabel + Multiclass + 
Sequence tagging)

● Investigate quality of generated labels in training SLMs

Datasets
● ArPro: 75% train, 8.5% dev, and 16.5% test.

● ArAIEvalT1: SOTA test subset
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Experiments

● Transformer models (PLM): AraBERT
● GPT-4

Models

Evaluation Measures
● Modified F1 (considers partial matches)

● Inter-rater agreement (𝛄)
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Results 
How does GPT-4 perform in annotation? 

● In cases where GPT-4 has to predict the text spans (annotator and selector), it predicts wrong text indices 
but correct text spans.

● A simple heuristic to find first appearance of text span in a paragraph significantly improves performance

Role Micro-F1 Macro-F1 Span (γ)
Annotator 0.050 0.045 0.247
Selector 0.137 0.144 0.477
Consolidator 0.671 0.570 0.609

Wrong indices predicted!

Role Micro-F1 (orig) Micro-F1 (correct)

Annotator 0.050 0.117
Selector 0.137 0.297
Consolidator 0.671 0.670

Apply a correction heuristic!
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Results 
How useful are GPT-4 annotations for SLM training?
● Train a SLM using the 3 sets of GPT-4 annotations
● Compare to SLM trained on gold labels

● SLM shows significantly better performance when using GPT-4 as consolidator labels

● SLM with GPT-4 annotations outperforms SOTA on ArAIEval24T1test

Model Train Set Micro-F1
Random - 0.010
GPT-4 - 0.117
AraBERT GPT-4Annotator 0.127
AraBERT GPT-4Selector 0.236
AraBERT GPT-4Consolidator 0.335
AraBERT ArProtrain 0.387

Model Train Set Micro-F1
CUET_sstm - 0.300
AraBERT GPT-4Annotator 0.124
AraBERT GPT-4Selector 0.257
AraBERT GPT-4Consolidator 0.334
AraBERT ArProtrain 0.406

Test on ArAIEval24T1test 
which is the Arabic SOTA for the task

Test on ArProtest 
which is the test split of of the same 

gold dataset
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Results 
Does GPT-4 annotate some techniques more effectively?
● Compute per-technique 

annotation agreement 
(𝛄) with gold labels

Across different roles, GPT-4 
shows High agreement with 
gold labels for some 
techniques.

Technique Annotator
Causal Oversimplification 0.889

Consequential Oversimplification 0.835

Doubt 0.815

Obfuscation/Vagueness/Confusion 0.791

Selector
Doubt 0.802

Flag Waving 0.705

Appeal to Hypocrisy 0.66

Loaded Language 0.654

Consolidator
False Dilemma /No Choice 0.872

Loaded Language 0.774

Straw Man 0.697

Doubt 0.695
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Conclusions 

● This is the first attempt at investigating GPT-4’s performance as an annotator for propaganda span 

identification and labelling.

● We the model’s performance when provided with sets of information of varied richness, which 

represents an increased cost and effort in hiring human annotators.

● We study the effectiveness of GPT-4’s labels when used to train specialized models for the task.

● Results: 

○ Providing more information significantly improves the model’s annotation performance and 

agreement with human expert consolidators.

○ We can train effective models using labels provided by GPT-4 when acting as a consolidator.

● Future research will explore additional LLMs and learning setups (e.g., few shot learning).
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Thank You

https://github.com/MaramHasanain/llm_prop_annot
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